A gap theorem for α-harmonic maps between two-spheres

نویسندگان

چکیده

In this paper we consider approximations introduced by Sacks-Uhlenbeck of the harmonic energy for maps from $S^2$ into $S^2$. We continue analysis in [6] about limits $\alpha$-harmonic with uniformly bounded energy. Using a recent identity [7], obtain an optimal gap theorem degree $-1, 0$ or $1$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Structure Theorem of Dirac-harmonic Maps between Spheres

For an arbitrary Dirac-harmonic map (φ, ψ) between compact oriented Riemannian surfaces, we shall study the zeros of |ψ|. With the aid of Bochner-type formulas, we explore the relationship between the order of the zeros of |ψ| and the genus of M and N . On the basis, we could clarify all of nontrivial Dirac-harmonic maps from S to S.

متن کامل

Harmonic maps between three-spheres

It is shown that smooth maps f : S → S contain two countable families of harmonic representatives in the homotopy classes of degree zero and one.

متن کامل

A Liouville theorem for harmonic maps and

A Liouville theorem is proved which generalizes the papers of Hu, MP].

متن کامل

Stable Stationary Harmonic Maps to Spheres

Dedicated to Professor WeiYue Ding on the occasion of his 60th birthday Abstract For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of stable-stationary harmonic maps to the sphere S. We show that the singular set of stable-stationary harmonic maps from B to S is the union of finitely many isolated singular points and finitely many Hölder continuous curves. We also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2021

ISSN: ['2157-5045', '1948-206X']

DOI: https://doi.org/10.2140/apde.2021.14.881